新万博体育下载_万博体育app【投注官网】

图片

Dr. Georg Frenck

Akademischer Rat a.Z.
Differentialgeometrie
Telefon: 0821-598-2228
E-Mail:
Raum: 3024 (L1)
Adresse: Universit?tsstra?e 14, 86159 Augsburg

Research Interests

  • Positive scalar curvature
  • Spaces of Riemannian metrics
  • Topology and Geometry of Manifolds

Publications

Preprints

?Spaces of Positive Scalar Curvature metrics on totally nonspin Manifolds with spin boundary“, 2022.

arXiv:? 2204.11512

DOI:? 10.1007/s00209-023-03270-1

?

?

?Sphericity of?κ-classes and positive curvature via block bundles“ (Appendix with Jens Reinhold), 2021.

arXiv:? 2109.10306

?

Publications

?Spaces of positive intermediate curvature metrics“, (with Jan-Bernhard Korda?),?Geometriae Dedicata, 2021.

DOI:? 10.1007/s00209-023-03270-1

arXiv:? 2011.11388

?

?Bundles with Non-multiplicative A-hat-Genus and Spaces of Metrics with Lower Curvature Bounds“ (with Jens Reinhold), International Mathematics Research Notices, 2021.

DOI:? 10.1093/imrn/rnaa361

arXiv:? 2010.04588

?

?Cohomogeneity One Manifolds and Homogoneous Spaces of Positive Scalar Curvature“ (with Fernando Galaz-Garcia and Philipp Reiser), Bulletin of the London Mathematical Society, 2022.

DOI:? 10.1112/blms.12557

arXiv:? 2009.13142

?

?H-space structures on spaces of metrics of positive scalar curvature“, Transactions of the American mathematical Society, 2021.

DOI:? 10.1090/tran/8505

arXiv:? 2004.01033

?

?The action of the mapping class group on metrics of positive scalar curvature“, Mathematische Annalen, 2021.

DOI:? 10.1007/s00208-021-02235-1

arXiv:?? 1912.08613

?

?The Gromov--Lawson—Chernysh surgery theorem“ (with Johannes Ebert), Boletín de la Sociedad Matemática Mexicana, 2020.

DOI:? 10.1007/s40590-021-00310-w

arXiv:? 1807.06311

Suche