新万博体育下载_万博体育app【投注官网】

图片

Research foci

My research is focussed on nature-inspired optimisation algorithms, also known as metaheuristics or evolutionary algorithms. A main part of my work is the analysis of algorithmic behaviour, especially in relation to the components causing or influencing it. This is why I examine this topic from a conceptual perspective, highlighting similarities and differences of the optimisation algorithms, as well as from an empirical perspective, performing experiments to quantify the influence of different components on the overall algorthmic behaviour.

?

In addition, I am interested in possibilities of combining metaheuristics and machine learning techniques, parallel and distributed algorithms, and methods and tools for experimental and statistical analyses of optimisation algorithms. I am also interested in applying metaheuristics to optimisation problems, especially from the field of bioinformatics.

?

Publications

2023 | 2022 | 2021 | 2020 | 2019

2023

Helena Stegherr, Leopold Luley, Jonathan Wurth, Michael Heider and J?rg H?hner. 2023. A framework for modular construction and evaluation of metaheuristics.
PDF | BibTeX | RIS

Michael Heider, David P?tzel, Helena Stegherr and J?rg H?hner. 2023. A metaheuristic perspective on learning classifier systems. DOI: 10.1007/978-981-19-3888-7_3
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Richard Nordsieck and J?rg H?hner. 2023. Assessing model requirements for explainable AI: a template and exemplary case study. DOI: 10.1162/artl_a_00414
PDF | BibTeX | RIS | DOI

Helena Stegherr, Michael Heider and J?rg H?hner. 2023. Assisting convergence behaviour characterisation with unsupervised clustering. DOI: 10.5220/0012202100003595
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, David P?tzel, Roman Sraj, Jonathan Wurth, Benedikt Volger and J?rg H?hner. 2023. Discovering rules for rule-based machine learning with the help of novelty search. DOI: 10.1007/s42979-023-02198-x
PDF | BibTeX | RIS | DOI

Jonathan Wurth, Helena Stegherr, Michael Heider, Leopold Luley and J?rg H?hner. 2023. Fast, flexible, and fearless: a rust framework for the modular construction of metaheuristics. DOI: 10.1145/3583133.3596335
BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Roman Sraj, David P?tzel, Jonathan Wurth and J?rg H?hner. 2023. SupRB in the context of rule-based machine learning methods: a comparative study. DOI: 10.1016/j.asoc.2023.110706
BibTeX | RIS | DOI

2022

Michael Heider, Helena Stegherr, David P?tzel, Roman Sraj, Jonathan Wurth, Benedikt Volger and J?rg H?hner. 2022. Approaches for rule discovery in a learning classifier system. DOI: 10.5220/0011542000003332
PDF | BibTeX | RIS | DOI

Helena Stegherr, Michael Heider and J?rg H?hner. 2022. Classifying metaheuristics: towards a unified multi-level classification system. DOI: 10.1007/s11047-020-09824-0
PDF | BibTeX | RIS | DOI

Jonathan Wurth, Michael Heider, Helena Stegherr, Roman Sraj and J?rg H?hner. 2022. Comparing different metaheuristics for model selection in a supervised learning classifier system. DOI: 10.1145/3520304.3529015
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and J?rg H?hner. 2022. Investigating the?impact of?independent rule fitnesses in?a?learning classifier system. DOI: 10.1007/978-3-031-21094-5_11
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and J?rg H?hner. 2022. Separating rule discovery and global solution composition in a learning classifier system. DOI: 10.1145/3520304.3529014
PDF | BibTeX | RIS | DOI

2021

Helena Stegherr and J?rg H?hner. 2021. Analysing metaheuristic components.
PDF | BibTeX | RIS | URL

Helena Stegherr, Michael Heider, Leopold Luley and J?rg H?hner. 2021. Design of large-scale metaheuristic component studies. DOI: 10.1145/3449726.3463168
PDF | BibTeX | RIS | DOI

2020

Lukas Rosenbauer, Anthony Stein, Helena Stegherr and J?rg H?hner. 2020. Metaheuristics for the minimum set cover problem: a comparison. DOI: 10.5220/0010019901230130
PDF | BibTeX | RIS | DOI

2019

Helena Stegherr, Anthony Stein and J?rg H?hner. 2019. Parallel chemical reaction optimization for utilization in intelligent RNA prediction systems.
PDF | BibTeX | RIS | URL

Curriculum/Vitae

since 2019 Research Assistant with the chair for Organic Computing
2015–2019 Bachelor programme Computer Science at the 新万博体育下载_万博体育app【投注官网】 of Augsburg
2012–2014 Master programme Biochemistry at the 新万博体育下载_万博体育app【投注官网】 of Ulm
2009–2012 Bachelor programme Biochemistry at the 新万博体育下载_万博体育app【投注官网】 of Ulm

Courses / teaching

(applied filters: semester: current | institute: Organic Computing | lecturers: Helena Stegherr | course types: all)
name semester type
Grundlagen des Organic Computing winter semester 2024/25 Vorlesung
Seminar Organic Computing (Bachelor) winter semester 2024/25 Seminar
Studentische Arbeiten am Lehrstuhl Organic Computing winter semester 2024/25 sonstige
?bung zu Grundlagen des Organic Computing winter semester 2024/25 ?bung
Seminar Organic Computing (Master) winter semester 2024/25 Seminar

Anleitung: Bitte doppelklicken Sie auf das PlugIn "Lehrveranstaltungen" (aktive Filter), um dort den Dozenten/die Dozentin anzugeben, für welche die Lehrveranstaltungen ausgegeben werden sollen.

?

Dieses Text-PlugIn k?nnen Sie ggf. für weitere Angaben zu Lehrveranstaltungen nutzen oder auch als Alternative zum PlugIn "Vorlesungsverzeichnis".

Search