新万博体育下载_万博体育app【投注官网】

图片

Advancing and Assessing Computational Methods in Systems Biomedicine

Event Details
Date: 07.11.2024, 17:30 o'clock - 19:00 o'clock 
Location: N2045, Universit?tsstra?e 2, 86159 Augsburg
Organizer(s): Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics
Topics: Studium, Wissenschaftliche Weiterbildung, Informatik, Gesundheit und 新万博体育下载_万博体育app【投注官网】izin
Series of events: 新万博体育下载_万博体育app【投注官网】ical Information Sciences
Event Type: Vortragsreihe
Speaker(s): Dr. Clemens Kreutz
BIOINF ASFDASDF DSFASF ASDF ASDF ? 新万博体育下载_万博体育app【投注官网】 of Augsburg

In diesem Wintersemester wird die im WiSe 2022/23 erfolgreich gestartete Vortragsreihe 新万博体育下载_万博体育app【投注官网】ical Information Sciences fortgesetzt. Renommierte Wissenschaftlerinnen und Wissenschaftler unterschiedlicher Fachdisziplinen und Forschungsstandorte geben jeden Donnerstag ab 17:30 Uhr Einblicke in aktuelle Fragestellungen und Anwendungsgebiete des breiten Forschungsfeldes 新万博体育下载_万博体育app【投注官网】ical Information Sciences.


Due to the rapid progress in developing experimental techniques, establishing and improving analysis methods is one of the major challenges in computational life sciences. For many analysis tasks, however, the limitations and performance of competing methods remain unknown, and there are no clear rules or guidelines for selecting the optimal analysis method. Benchmark studies have proven to be valuable tools for evaluating the performance and applicability of analysis approaches. However, they are often subject to methodological limitations and deficiencies, leading to potential bias in the results.

In my presentation, I will give an overview of novel approaches developed in my group in the context of mathematical modeling and omics analyses. In particular, I will summarize our ongoing efforts to improve the methodology of benchmark studies. By generally incorporating rigorous planning, design, and analysis principles in benchmark studies, we aim to promote the development of novel analysis approaches and the identification of decision rules for optimal method selection in practice. Especially in view of the enormous efforts to apply deep learning methods in all areas of research, reliable performance comparisons are of great importance.

More events of this series of events "新万博体育下载_万博体育app【投注官网】ical Information Sciences"

More events: Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics

  • October 2024 / November 2024
  • November 2024
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
  • November 2024 / December 2024
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • December 2024
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • December 2024 / January 2025
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
  • January 2025
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
  • January 2025 / February 2025
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
  • February 2025
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
  • February 2025 / March 2025
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 01
    • 02
  • March 2025
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
  • March 2025
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
  • March 2025 / April 2025
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
  • April 2025
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
  • April 2025 / May 2025
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
  • May 2025
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • May 2025 / June 2025
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
  • June 2025
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • June 2025 / July 2025
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
  • July 2025
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • July 2025 / August 2025
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 01
    • 02
    • 03
  • August 2025
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
  • August 2025
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • September 2025
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
    • 13
    • 14
  • September 2025
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
  • September 2025 / October 2025
    • 29
    • 30
    • 01
    • 02
    • 03
    • 04
    • 05
    • 06
    • 07
    • 08
    • 09
    • 10
    • 11
    • 12
  • October 2025
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

Search